• Карта сайта
    • Титульная страница
    • Приветствие
    • Объяснительная записка
    • Рабочая программа
    • Галерея
    • Помощь
    • Поиск
    • Глоссарий
  • Вход
    • Регистрация
    • Забыли пароль?

> Главная Рабочая программа

Механика

Опираясь на опыт, некоторые ученые 16 в (среди них Леонардо да Винчи, Б.Варки) высказывали сомнение относительно законов аристотелевской механики, безраздельно господствовавшей до того времени, но своего решения проблем не предложили (позже это сделает Галилей). Практика применения артиллерии способствовала постановке и решению новых научных проблем: Тарталья в трактате Новая наука рассмотрел вопросы баллистики. Теорией рычагов и весов занимался Кардано. Леонардо да Винчи стал основоположником гидравлики. Его теоретические изыскания были связаны с устройством им гидросооружений, проведением мелиоративных работ, строительством каналов, усовершенствованием шлюзов.      Это время величайших прогрессивных переворотов, которое нуждалось в титанах и породило титанов по силе мысли, страсти и характеру, по многосторонности и учёности...". И среди этих титанов эпохи Возрождения Ф. Энгельс одним из первых называет Леонардо да Винчи (1452-1519 гг.), "которому обязаны важнейшими открытиями самые разнообразные области физики".
«Опыт- отец всякой достоверности. Мудрость- дочь опыта» утверждал Леонардо да Винчи, который родился 15 апреля 1452 года в небольшом городке Винчи, недалеко от Флоренции.
С 1472 по 1482 год он живёт и работает во Флоренции, с 1482 по 1499 год - в Милане, затем снова во Флоренции ( 1499-1506 ) и в Милане ( 1506-1513). В 1516 году Леонардо да Винчи уезжает во Флоренцию по приглашению французского короля и там проводит свои последние  годы.

"Механика- рай математических наук",- говорил Леонардо, много времени и энергии отдавая её изучению. Работы Леонардо в области механики могут быть сгруппированы по следующим разделам: законы падения тел; законы движения тела, брошенного под углом к горизонту; законы движения тела по наклонной плоскости; влияние трения на движение тел; теория простейших машин (рычаг, наклонная плоскость, блок); вопросы сложения сил; определение центра тяжести тел; вопросы, связанные с сопротивлением материалов. Перечень этих вопросов делается ёщё более значительным, если учесть, что многие из них разбирались вообще впервые. Остальные же, если и рассматривались до него, то базировались в основном на умозаключениях Аристотеля, весьма далёких в большинстве случаев от истинного положения вещей. По Аристотелю, например, тело, брошенное под углом к горизонту, должно лететь по прямой, а в конце подъёма, описав дугу круга, падать вертикально вниз. Леонардо да Винчи рассеял это заблуждение и нашёл, что траекторией движения в этом случае будет парабола.

 

Проекты печатных и шлифовальных станков, деревообрабатывающих, ткацких машин и машин для ворсования тканей.

 

Конструкции летательных аппаратов 

Очень характерно для механики Леонардо да Винчи стремление вникнуть в сущность

колебательного движения. Он приблизился к современной трактовке понятия резонанса, говоря о росте колебаний при совпадении собственной частоты системы с частотой извне. " Удар в колокол получает отклик и приводит в движение другой подобный колокол, и тронутая струна лютни находит ответ и приводит в слабое движение другую подобную струну той же высоты на другой лютне".

Леонардо да Винчи впервые и много занимался вопросами полёта. Первые исследования, рисунки и чертежи, посвящённые летательным аппаратам, относятся примерно к 1487 году (первый Миланский период). В первом летательном аппарате применялись металлические части; человек располагался горизонтально, приводя механизм в движение руками и ногами.

В дальнейшем Леонардо заменил металл деревом и тростником, верёвки- жёсткими передачами, а человека расположил вертикально. Он стремился освободить руки человека: "Человек в своём летательном аппарате должен сохранять полную свободу движений от пояса и выше. У человека запас силы в ногах больше, чем нужно по его весу". Однако отсутствие уверенности в том, что этой силы достаточно для успешного полёта в любых условиях, привело его к мысли об использовании пружины как двигателя и о планере, с которым можно осуществить если не полный полёт, то хотя бы парение в воздухе. Он построил модель планера и готовил его испытание. Стремление обезопасить человека в процессе этих испытаний побудило его к изобретению парашюта. Трудно перечислить все инженерные проблемы, над которыми работал пытливый ум Леонардо. Умер он в 1519 году во Франции. Любуясь сегодня великолепными картинами Леонардо да Винчи, рассматривая его остроумные проекты его различных сооружений, перечитывая глубокие мысли учёного, благодарное человечество воздаёт,  и будет воздавать дань этому гиганту из гигантов эпохи Возрождения.

В области механики огромную роль сыграли работы Галилея. Господствовавшая в эту эпоху схоластическая физика, основавшаяся на поверхностных наблюдениях и умозрительных выкладках, была засорена представлениями о движении вещей в соответствии с их "природой" и целью о естественной тяжести и легкости тел; о "боязни пустоты"; о совершенстве кругового движения и другими ненаучными домыслами, которые сплелись в запутанный узел с религиозными догмами и библейскими мифами.   

Галилей путем ряда блестящих экспериментов постепенно распутал его и создал важнейшую отрасль механики - динамику, т. е. учение о движении тел. Занимаясь вопросами механики, Галилей открыл ряд ее фундаментальных законов: пропорциональность пути, проходимого падающими телами, квадратам времени их падения; равенство скоростей падения тел различного веса в безвоздушной среде (вопреки мнению Аристотеля и схоластиков о пропорциональности скорости падения тел их весу); сохранение прямолинейного равномерного движения, сообщенного какому-либо телу, до тех пор, пока какое-либо внешнее воздействие не прекратит его (что впоследствии получило название закона инерции), и др.
Философское значение законов механики, открытых Галилеем было громадным. Открытие же законов механики Галилеем и законов движения планет Кеплером, давшими строго математическую трактовку понятия этих законов, ставило это понимание на физическую почву. Тем самым впервые в истории развитие человеческого познания понятие закона природы приобретало строго научное содержание.

Но всё же учёным, который заложил основы современного естествознания и является создателем классической физики, был великий английский физик, механик, астроном и математик Исаак Ньютон (1643-1727).Высокое признание получили работы Ньютона, в которых он заложил основы научного понимания законов мироздания взамен фантастических домыслов религии. Исаак Ньютон родился в местечке Вулсторп близ города Грантема в семье небогатого фермера. Учился в Кембриджском университете. В 1669 -1701 гг. Ньютон - профессор физики и математики в Кембриджском университете; с 1703 г. почти четверть века - бессменный президент Лондонского королевского общества - английской
академии наук. Ньютон сформулировал основные законы классической механики, открыл закон всемирного тяготения, разработал основы дифференциального и интегрального исчислений. В книге "Оптика" он объяснил большинство световых явлений с помощью развитой им корпускулярной теории света.

Но главный труд Ньютона "Математические начала натуральной философии" был отправным пунктом всех работ по механике в течение последующих двух веков. Гелиоцентрическая система мира Коперника получила теперь динамическое обоснование и стала прочной научной теорией. Три закона Ньютона завершили труды Галилея, Декарта, Гюйгенса и других учёных по созданию механики и стали прочной основой для дальнейшего её развития.
К первому изданию "Начал" Ньютон написал своё собственное предисловие, где он говорил о тенденции современного ему естествознания "подчинить явления природы законам математики". Далее Ньютон набрасывал программу механической физики: "Сочинение это нами предлагается как математическое обоснование физики. Вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить все остальные явления". Так Ньютон сформулировал задачи физики.
"Начала" - вершина Научного творчества Ньютона - состоят из трёх частей: в первых двух речь идёт о движении тел, последняя часть посвящена системе мира. Приведём формулировку законов Ньютона в русском переводе, сделанном академиком А.Н. Крыловым.
1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
2. Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
3. Действию всегда есть равное и противоположное противодействие, иначе, - взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.
"Начала" Ньютона знаменовали новую эру в развитии науки. Они явились прочным фундаментом, на котором успешно строилась физика XVIII-XIX веков, получившая название классической. Книга подводила итог всему сделанному за предшествующие тысячелетия в учении о простейших формах движения материи.

  При составлении этого материала использовались:

1. Чемберлин Эрик. Эпоха Возрождения. Быт, религия, культура/ Перевод с англ. Е.Ф.Левинов.- М.: ЗАО Центрполиграф, 2006. – 239 с.

 

<-Назад    Вперёд->

 
© 2011 Idea: A. Spivakovskiy; Materials: E. Spivakovskaya; Coding: A. Abaimov; Design: K.Nimchenko